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Abstract
In this paper we consider an application of Sobolev-orthogonal functions and radial basis
function to the numerical solution of partial differential equations. We develop the funda-
mentals of a spectral method, present examples via reaction-diffusion partial differential
equations and discuss briefly some links with theory of wavelets.

1 Introduction
Radial basis functions are a well-known and useful tool for functional approximation in
one or more dimensions. The general form of approximations is always a linear combin-
ation (finite or infinite) number of shifts of a single function, the radial basis function.
In more than one dimension, this function is made rotationally invariant by composing
a univariate function, usually called 0, with the Euclidean norm. In one dimension such
approximation usually simplifies to univariate polynomial splines. For a recent review of
radial basis function approximations, see [5].

This note is about applications for radial basis functions and other approximation
schemes such as Sobolev-orthogonal polynomials and more general Sobolev-orthogonal
functions to the numerical solution of partial differential equations. The basic ideas stem
from the theory of Sobolev-orthogonal polynomials ([13]), and in this paper there is a
remarkable connection developed between applications of Sobolev-orthogonality with
radial basis functions (e.g. [5]), and wavelets are mentioned as well (e.g. [8, 9]). Sobolev-
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Sobolev-orthogonal functions, radial basis functions 199

orthogonal polynomials are a device to extend the standard theory of orthogonal polyno-
mials (see, for instance, [12]) by requiring orthogonality with respect to non-selfadjoint
inner products of the form

(f, g) =j f(x)g(x) dx + A f'(x)g'(x) dx
t fa

for a positive parameter A and a suitable interval (a, b), a, b E R U {±oo}. The dx in
the two integrals is often replaced by more general Borel measures, do, say. The scheme
which we want to discuss in this short article is one of spectral type: in lieu of e.g.
finite element spaces as underlying piecewise polynomial approximation spaces for the
solution, we take purpose-build approximations which make the linear systems which we
need to solve particularly simple, sometimes even diagonal.

Therefore, in the first instance, we develop a theory of applying Sobolev-orthogonal
polynomial basis functions for the numerical solution of partial differential equations via
a spectral method. Then we extend this idea to general classes of radial basis function-
type methods, where shift-invariant approximation spaces are generated with Sobolev-
orthogonal basis functions. Due to the introductory character of this paper, our dis-
cussion is restricted to relatively simple cases. Our presentation is illustrated with the
one-dimensional reaction-diffusion partial differential equation.

This is the place to note that radial basis functions have found a number of other
applications in the discretisation of PDEs. Thus, for example, Driscoll and Fornberg [10]
have used fast-converging 'flat' multiquadrics in pseudospectral methods, while Frank
and Reich [11] applied radial basis functions with particle methods in order to conserve
enstrophy in the solution of certain shallow-water equations. Our application is of an
altogether different nature.

1.1 Examples of PDEs and Sobolev-orthogonality

Consider the partial differential equation

Ou- = V (aVu) + bu + c, (1.1)

where u = u(x, t) is of sufficient smoothness with respect to x and t, x is given in a cube
V C Rd (more generally, in a finite domain), t > 0, a = a(x) > 0, b = b(x) and c = c(x).
We impose zero Dirichlet boundary conditions. The stipulation of cube as a domain and
zero Dirichlet conditions is unduly restrictive, but it will suffice for the short presentation
in this paper and adequately illustrate the main novel concepts in our presentation. In
the next section, we shall also introduce a nonlinearity into the underlying PDE.

We wish to approximate the solution u(x, t) as a finite linear combination of the
generic form

m
u(x, t)= Za(x)wi(t),

Z=1

where t is nonnegatiye and x resides in the domain. In the sequel we shall also use
expansions into infinite series with 1 E 2Z. Thus, a Galerkin ansatz (in the usual L2 inner
product on R1id which we denote by (.,.) in contrast to the specialised Sobolev-inner



200 M. Buhmann, A. Iserles, and S. P. Norsett

product (., .)• above) gives

E(a ,ak)Wi = E (V(aVao), ak) w1 + E(bal, ak)wt + (c, ak), k = 1,2,.. m.
1=1 1=l /=1

Integration by parts in the second term above and substitution of the requisite zero
boundary conditions yield the alternative formulation

(al, ak)w = - (aVai, Vak) W1 + Z(bal, ak)wl + (c, ak), k = 1,2,..., m.

(1.2)
We solve the ODE system (1.2) with respect to t, for example with the backward Euler
scheme (we use backward Euler for the sake of simplicity, but it should be noted that
the same analysis applies to any implicit multistep method, because our use of Sobolev-
orthogonality is only linked to the implicitness of the solution method)

wn+1 = wn + AtFi(wn+4 ), n E Z+, 1 =1,2,... ,^, (1.3)

where the function F1 is given implicitly by the equations (1.2) and where wn+ 1 in
the expression above is the vector with components wy+1, 1 = 1, 2,..., m. Let us now
multiply expression (1.3) by (ai, ak) and sum up for 1 = 1,2,..., m. Then, exploiting
(1.2), a little algebra yields

~ {Ji [1- Atb(x)] al(x)Oak(x)dx + At /V a(x)VToa(x)Vaok(x)dx} w?-

- / al(x)ak(x)dxwY + j c(x)ak(x)dx. (1.4)

The connection with Sobolev-inner products is clear. Indeed, let us now choose the set
Wm,n := {wlw 2 ,- ... , wm} as a set of functions that are orthogonal with respect to the

0

homogeneous Sobolev Hd,2 inner product (see, e.g., [13])

(f,g)At := [1 - Atb(x)]f(x)g(x)dx + At L a(x)VT f(x)Vg(x)dx (1.5)

(this of course requires that Atb(x) < 1, hence may restrict in a minor way the choice of
the time step At). Further below we shall also use infinite sets W instead of the finite
set Win,,. It is important to note that in general the Sobolev inner-product depends
upon the step size. Subject to this formulation, the linear system (1.4) diagonalises and
its numerical solution becomes trivial. We turn now to a more elaborate example in the
next subsection, namely the reaction-diffusion equation.

1.2 Reaction-diffusion as a paradigm for nonlinear PDEs

Let us consider the nonlinear partial differential equation

au- = V(aVu) + f(u), (1.6)
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where otherwise all the quantities are as in (1.1), including the boundary conditions.
Suppose that an approximation un to u(x, nAt) is available at all the spatial grid points.
We commence by interpolating un to requisite precision by some function v. Thus, v is
defined throughout the cube V and coincides with un at the grid points. This allows us
to linearise the source function f about un, the outcome being

-u V(aVu) + c + bu + g(u), (1.7)

where

b(x) = f'(v(x)),

c(x) = f(v(x)) - f'(v(x))v(x),

g(x,u) = f(u) - f(v(x)) - f'(v(x))[u- v(x)].

Note that
g(x, u) = O(u - vl).

We can now solve the nonlinear system (1.7) by functional iteration, i.e. by letting as a
start

wn+i'° = wn, 1-1,2,....,m,

and recurring, employing the inner product (1.5),
m

S (Oa,, Ok)AtW± "-1)j--k (1.8)

-- h ak)Wn ( "m. alw ja ,) k~l 2,..., m,

for j E 2Z+.

If, as in the previous subsection, we choose Wm so as to diagonalise the linear sys-
tem, each step of (1.8) becomes relatively cheap. Hence this approach might offer a
realistic means to derive spectral approximation to nonlinear PDEs. Indeed, a special
one-dimensional case can be treated straightforwardly and it is presented in the sequel.

1.3 The one-dimensional case using polynomial splines

Let (1.1) be given in one space dimension and without source terms, whence it becomes
the familiar diffusion equation with variable diffusion coefficient,

in_ 0 a
Tt = Ox \ ax ] "

Thus, provided that 0 < x < 1 and t nonnegative, we require the 'usual' Sobolev
orthogonality [13] with respect to the inner product

(f,g)At = (f, g) f(x)g(x)dW(x) + f'(x)g'(x)do(x),
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where
dox) = 1 - Atb, d(x) Ata.

dx dx

We emphasise again the dependence of the Sobolev-inner product on the step size. Taking
the approach of the previous subsection as our point of departure, an obvious option is
to use Sobolev-orthogonal polynomials. An alternative approach which can be worked
out explicitly and which we wish to demonstrate in this subsection, is to use univariate
polynomial spline approximations. It has the advantage of being more amenable to a
generalisation to several space dimensions.

We suppose that the unit-interval [0, 1] is divided into N intervals of length h := N

and consider a piecewise-quadratic basis of continuous functions s1, 82, ... , SN such that

h[x -(I- 1)h]+a(x-lh)[x-(1- 1)h], (1-1)h < x < lh,

s,(x) ![(l+l)h - x] +01(x - Ih)[x - (1 + 1)h], 1h < x < (1 + 1)h,

0, Ix - ihl > h.

Clearly, st is a continuous, C[0, 1] cardinal function of Lagrange interpolation at the
knots (hence, a quadratic spline with double knots, cf., Powell [16], the added degree of
freedom taken up by the requirement of Sobolev-orthogonality). Next, we need just to
impose Sobolev orthogonality, and solve for the coefficients a, and p3t. This is equivalent
to the requirement that

(s, s1+) At = 0, 1 = 1,2,..., N - 1.

In the special case a(x) - 1, b(x), c(x) =_ 0, we have p(x) = x, O(x) = Atx and

(s,sI+1)At = h a+, (x-h)x . + x(x_-h) dx

" At (h + 2a1+ 1x--aO+1h) (-H + 2/3x - 031h) dx

=hf1[-+ al+1h2(- [1-- 01h 2C(1 )d

At 1 10o21ýd
-h ]~(1 + 2a,~1 • - a,±l)(1 + /3, - 2/3,•)d•

h [(1 h2h At (-1+ 1
- ~ (a,+ i + /3) + h / + g (•±~ h+ / i]

Let M = At/h 2 be the Courant number. Since we have two degrees of freedom for each
I and because each equation is otherweise independent of 1, we may fix a =_ a, = 0.
Then, letting & := h2 a, requiring (s,, sl+1)At = 0 is equivalent to

5 - 55 + &2 + lOta2 - 30/t = 0 (1.9)

or
(10p + h4 )a2 - 5h 2 a + 5 - 30p = 0.
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We wish to solve this quadratic equation for a for a suitable range of Courant numbers.
Indeed, the equation (1.9) has two real solutions a for every p.> 1 if h is small enough,
since its discriminant is

(120y. + 5)h 4 + 1200P 2 - 200p.

In the case z -t each s, reduces, upon the choice of & = 0, to a chapeau function.
Otherwise we obtain a = 0(1). We may give up a small support, characteristic of
spline functions (which, anyway, is of marginal importance, since we do not solve linear
systems!). This is a case discussed in the next section. Another obvious alternative is to
construct an orthogonal basis from chapeau functions. This, however, is easily seen to
be identical to the LU factorization of the standard FEM matrix

2 0 0 0 ... o
1 0 0 ... o

6 3 6 ... 0

0 1 _2 1o ... 0 6

0o... 0 0
0 ... 0 0 0 6

2 Applications of radial basis functions and wavelets

2.1 Sobolev-orthogonal translates of a radial basis function

In this section, we wish to develop a more general approach employing the concepts
of wavelets and radial basis functions and employ shift-invariant spaces of approxima-
tions for our spectral methods. We begin by giving up the compactness of the domain
V and work on the entire real line instead. For this, we shall demonstrate the use of
Sobolev-inner products and shift-invariant spaces and concentrate solely on this part
of the analysis in the present article. So, in particular, the set W above is of the form
10(. - nh) I n E 2Z}. In the sequel we shall add several remarks about how to find
compactly-supported 0 that allow the treatment of partial differential equations on com-
pact domains. We remark that n is no longer used for the time-steps in the differential
equation solver but for the shifts of the radial functions.

To start with, we wish to find a function 0 E H-2 (R), where H2 (]R) is a non-
homogeneous Sobolev space, such that for a positive constant A and positive spacing
h it is true that

j O(x)¢(x - hn) dx + A f 0¢'(x)¢'(x - hn) dx = Jon, n c 2Z. (2.1)

We multiply both left- and right-hand-side of the general pattern (2.1) by exp(iOn) and
sum over n E 2Z,

E exp(iOn) {j O(x)o(x - hn) dx + A j '(x)0'(x - hn) dx = 1, 0 € [-7r, 7r].

n -- -(00 2.2
(2.2)
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In order to be able to exchange summation and integration and apply the Poisson sum-
mation formula (Stein and Weiss [17], p. 252) we make a number of assumptions. The
version of the Poisson summation formula that we wish to use states that for a univariate
function f with

If W)I = 0((i + IxI>1-)
and andxVW = o((i + x)-,-0)

and positive c, the following equality holds (note that the first bound in the above implies
existence and continuity of the one-dimensional Fourier transform)

E f(O + 27rj) = exp(iOj)f(j).
j=-oC 3=-co

Specifically, we assume that the following three decay estimates hold:

k'(x)I < c(1 + IxI)-1,

0M'(x)I < c(1 + IxD-Y-•,
and I¢(•)I < c(1 + IkI)-•-•,

where c is a generic positive constant, e > 0, ý denotes the Fourier transform and we
demand the faster rate of decay in the last display because we shall later require summab-
ility of translates of the Fourier transform multiplied by the square of its argument. Note
in particular that the first decay condition renders the Fourier transform ¢ continuous
and well defined.

An example for a function ¢ that satisfies the three decay conditions above is the
second divided difference of the multiquadric radial basis function [4] V? + C2 that is1 C2 _ -q+ +2~ )

ow(- 1) 2 +  X2+C2 + 1 c)2 +C 2 .

Here, C is a positive constant parameter. The above function decays cubically [4] and
its Fourier transform even decays exponentially due to the exponential decay of the
modified Bessel function K 1 [1] that features in the generalised Fourier transform of the
multiquadric, here stated only in the one-dimensional case,

-2CK(CI1)

(cf. Jones [14]).

Once summation and integration are interchanged, (2.2) becomes
00

O(x) E exp(iOn)O(x - hn) dx
--foo n=---0-
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+ A L '(x) E exp(iOn)0'(x - hn)dx = 1, 0 E [-ir, 7r], (2.3)

or, applying the Poisson Summation Formula (Stein and Weiss, [17], p. 252)

0 x O exp (ih-1x(0 + 2n)>4h-1(0 + 2rn)) dx + iAh-1 (2.4)

x r ¢'(x) Z exp(ih-ix(O+27rn))(0+27rn)ý(h-1(9+27rn)) dx h,
2n=-oo

where 0 E [-7r, 7r]. Because 0 vanishes at infinity, integration by parts of the second term
of.(2.4) gives

j0 O(x) E exp(ih-lx( + 27rn))qs(h-1(9 +27rn)) dx
n1=-co

oo 00+ q O(x) E exp(ih-'x(O + 27rn))(0 + 27rn) 2 (h-1 ( + 27rn))dx

12= 0

-( (h-(O- + 27rn))qs(-h-i(9-+ 27rn)) [1+ --h 2 (o + 27rn)2] h.
n=-oo

Since ¢ is real, e(-•) - ) and this implies

E I(h-'(O + 27rn))12 (1 + Ah- 2 (o + 27rn) 2 ) = h, 9 E [-7, 7]. (2.5)

This is our condition that leads to the required Sobolev-orthogonality. In summary, we
have established the following theorem.

Theorem 2.1 If the decay conditions on 0, as stated above, hold in tandem with the
expression (2.5), then the required orthogonality condition (2.1) is satisfied.

We note that, if we are given a 0 such that

E j(h'-l(+27rn)) =2 h, e [-r,7r], (2.6)
n=-oo

then
•(•) . ¢(•)(2.7)

satisfies (2.5). This expression can be used to derive an explicit transformation which
takes a 0 that satisfies (2.6), into a 0 satisfying (2.5), although its practical computation
may be nontrivial. Indeed, by the Parseval-Plancherel theorem [17], we get the useful
identity

1 if0 0  
YO (x- O• ¢(- y)Ko (L d,
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which is a convolution and whose Fourier transform is therefore (2.7) (cf., for instance,
Jones [14]). In (2.8), K 0 is the 0th modified Bessel function (Abramowitz and Ste-
gun [1]) which is positive on positive reals and satisfies Ko(t) - logt near zero and
Ko(t) Vi-r/(2t)e-t for large t, similar to the asymptotics we have used before for the
K 1 modified Bessel function. Hence, by a lemma in [7], see also (Light and Cheney [15])
0 decays algebraically of a certain order if V does. Moreover, because 1/V/1 + Ax2 is
positive, integer translates of ¢ are dense in L2 , say, provided that this is the case with
integer translates of 0 [18].

In some trivial cases we may evaluate the integral (2.8) explicitly, for instance for
O(x) = cos x, where the integral is again a constant multiple of the cosine function
(Abramowitz and Stegun [1]). Otherwise, the smoothness and fast exponential decay of
the modified Bessel function can be used together with a quadrature formula.

We may now use the translates of such Sobolev-orthogonal functions in the spectral
approximation of a PDE as above, letting W {¢(. - nh) I n E 2Z}.

An example of a function V that satisfies (2.5) is simply the characteristic function
scaled by h of the interval [-hir, hir]. In that case, [4(x)I decays like 1/Ix1. In fact, any
0 that satisfies [1j(6)1 < c(1 + I•I)1/2-E for positive e can be made to satisfy (2.6) by
subjecting it to the transformation

W W• (2.9)

see for instance (Battle [2]). If b is compactly supported then the transformed V) will
not necessarily be compact supported but decay exponentially [6].

In order to find a class of examples of compactly supported 0 that satisfy (2.6), see
Daubechies [8] for her compactly supported scaling functions ?P which are fundamental
for the construction of Daubechies wavelets. For example, the following conditions are
sufficient for 0 which shall be defined by its Fourier transform to satisfy (2.6) for h = 1
(other h can be used by scaling):

j= 
i

where, for some suitable coefficients h,

2N-1

1:= hke-

k=O

has to satisfy h(0) = 1, h(7r) = 0, and

Ih(ý)12 + Ih(6 + 7r)12 = 1, e [-_r, r].

For the construction of such h, see [8]. Compactly supported basis functions are import-
ant to approximate the numerical solution of a PDE as in the above example defined on
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a compact V. Moreover, any 0 with the aforementioned decay property can be made to
satisfy (2.5) by the transformation

(Vhý(ý) 
(2.10)

l S I4(ý+ h 12irn) 12(1 +A(ý + h- 127rn)2
n=--oo

They can also be found by applying the transformation (2.10) and using the transform-
ation (2.9) as well.

We note finally, that for instance, when 0 is a B-spline then its translates are dense
in L2 if we allow h to become arbitrarily small (see, for instance, Powell [16]) and the
last section of this paper).

2.2 Sobolev-orthogonal translates of a function in higher dimensions

Applying the approach of the previous subsection to the Sobolev inner product

f (~g~) d + J VT f(x)Vg(x) dx,
the outcome is the orthogonality condition

1 I4(h-l(O + 2rn))12(1 + Ah-2110 + 21rn12 ) = hd' 0 E [-Tw,W]d, (2.11)
nE 27d

which replaces (2.5). We are now also interested in the more general case of Sobolev-type
inner products

(x)g(x)px) dx + A J VT! (x)Vg(x)v(x) dx,

where the weights p and v are positive. Here the orthogonality condition becomes more
complicated. Specifically, it is

S$(h-1(0 + 27en))-1(h1-(0 + 27rn))
nE2Zd

+ h 2  (h( 2rn)) (h-l(0+ 2rn)) d, E [-r, 7r]d,

where

(I- [lx 4),v
and * denotes continuous convolution, used as in (2.8), where @ is convolved with a
modified Bessel function.

2.3 Error estimates

We can offer error estimates for the Sobolev-orthogonal bases, firstly, in the case when
¢ is a univariate spline of fixed degree m, say, with knots on hZ, and, secondly, in the
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case when 0 is a linear combination of translates of the radial Gauss kernel
e-2X2/2 x ,

e-a X EIR,

along hZZ. In the former case it is known that the uniform approximation error to a
sufficiently smooth function from the linear space spanned by 0(. - nh), n E 7Z, is at
most a constant multiple of hm+ 1 ([161). We have already mentioned that we require
A = 0(h 2 ), therefore it can be deduced by twofold integration by parts that the Sobolev
error is indeed 0(hm+l). This can be generalized in a straightforward way to higher
dimensions by tensor-product B-splines.

Our L 2 (IR) error estimates can be carried out as follows: Let f be a band-limited
function, that is, one with a compactly-supported Fourier transform, which satisfies
such assumptions that imply that the best least-squares approximation using a Sobolev
inner product

00

Sh(X) •_ (f, 0(. - hn)),,.h(x - nh), x E R, (2.12)
n=~-00

is well defined. For instance, we may require that (f, f)),,h < oo, as well as sufficient
decay of the radial basis function ¢, i.e.

1¢(r)l < c(1 + IrI)1e,
I0'(r)l • c(1+ IrI)-1-,

for a positive -. Here (, ), is the Sobolev inner product which we study in this note
and it is helpful to emphasise its dependence on h in the subscript. We begin with the
piecewise polynomial, i.e. spline, case. Hence, let 0 be from the space of splines of degree
m with knots on hZ, such that its translates are Sobolev orthogonal.

Theorem 2.2 Subject to the assumptions of the last paragraph, we have the error
estimate

11Sh - f112 = 0(hm+l), h -* 0. (2.13)

Proof: We shall establish in the course of this proof an error estimate for the first
derivative of the error function in (2.13), so that an order of convergence can also be
concluded for the norm associated with our Sobolev inner product. Indeed, because the
Fourier transform is an L2 (R) isometry, we may prove (2.13) by considering

I*h - f112 (2.14)

instead of the left-hand side of (2.13). The Fourier transform of (2.12) is

Wh(O) • (f,q('-nh));khe-iOnhý(O), 0 e R.

The absolute convergence of the above is guaranteed by the decay conditions on 0.
Hence the square of (2.14) is, by the Parseval-Plancherel Formula and periodisation of
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the integrand with respect to 0,
j'oo 00 2

E (•)- (fK (. - nh))A ,he-iOhný(O) dO
n=c--0

f00 00 p0) 2

- ] f(O)-- f f())ý()ei~hn(1 + g 2 ) d~eiOhn 0(0) dO

7r/h 00Jf f(0 + 21rk/h) - 0^(0 + 27rk/h)
Llrhk=_00

(0)0 5 )ei'nh(1 + )ý2) d~eiOnh d1 .
XA de . (2.15)

fl-O 00

The (1 + g•2) term in the above comes from the derivative in the Sobolev inner product
and Fourier transform. Because f is band-limited, for small enough h (2.15) assumes the
form

fr/h 0 0  
-' +0 _____ j) + ~ 2d.

J-r/h k=--oo n=--00 co (2.16)

Using again the band limitedness of f, together with the Poisson Summation Formula,
(2.16) can be brought into the form

r/h 0=-

cc 2

x1 E (O + 27rn/h)(O + 27rn/h)(1 + A((0+ 27n/h) ) dO

J t/h oo

7r/(h) - h00-(O + 27rk/h)f(0)b(o)(1 + A02)1 2 dO. (2.17)

nl/h k 00j (O J k -

In the case when 0 is in the aforementioned spline space, it can be expressed as the
inverse Fourier transform of

¢ = g/h•(•) , e IR, (2.18)
/!E•%_o I1(6 + h-12rn)12 (1 + A(6 + h-'2rn)2)

where f(6) = - This follows from (2.5) and from the fact that all splines from our
space are linear combinations of integer translates of r(x) := jIxm, whose generalised
Fourier transform is a multiple of 6-m-1 [14]. Since any constant factors in front of

the function 6-m-1 in P cancel in the expression for ¢ above, we have ignored them
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straightaway. Substituting (2.18) into (2.17), we get the integral over [-7r/h, 7r/h] of
2

1: f(O)o-- f(0 + h- 12rk)if(O) f(0)(1 + A02 ) . (2.19)
k=-oo I [f( + h-12n)12 (1 + A(O + h- 127rn) 2 )

Considering (2.19) for each m separately, it follows from (2.19) and from f(•) =

that our claim is true. Indeed for the sum over all terms with k $ 0, it is evident that
we obtain a factor of h2

,+
2 from the numerator, because the denominator is periodic,

containing one term independent of h, and the nonvanishing expression h-1 27rk in the
argument of f(0 + h-'27rk) guarantees f(0 + h- 1 27rk) - h-+' due to P(ý) = -,-1. Of
course, the squares then taken provide the h2

,,+
2 instead of h'+l.

On the other hand, for k = 0, we have for small enough h

((0) - EI(0)1
2(1 + AO2)f(O) 2

- =, If(0 + h- 1 27rn)12 (1 + A(0 + h- 127rn) 2 )

= I f( V If (0 + h '2 7rr)12 (1 + A(9 + h '2 7rn) 2) 2

1 + Elo If (0 + h- 127rn)12 (1 + A(0 + h-127rn) 2 )

which is also O(h 2m+2 ), as required, because the numerator provides an O(h 2."), ac-
cording to the rate of the decay of P and the power of h in its argument. This is then
squared to provide 0(h4") = O(h 2m+ 2 ).

As for the derivatives, one only has to multiply the Fourier transform of the error
function in (2.14) with 0, and we get the same error estimate by multiplying the integ-
rands in all the following integrals with 1012. El

The same analysis remains valid when considering integer translates of the Gauss
kernel e-Y2, 2 /2 in order to form 0. In this case we make use of the fact that the Gauss
kernel has a Fourier transform which is a multiple of e- 2 /(2) 2 ). We put this instead of
f into (2.19), and we then get arbitrarily-high orders of convergence from (2.14) as long
as we take 'y = 0(h), see also [3]. For this choice 0 is exponentially decaying, whereas
for splines of degree m we merely get algebraic decay at infinity of order -m - 1.
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